Plant Transcription Factor Database
Previous version: v3.0
Arabidopsis thaliana
ZF-HD Family
Species TF ID Description
AT1G14440.1homeobox protein 31
AT1G14440.2homeobox protein 31
AT1G14687.1homeobox protein 32
AT1G18835.1mini zinc finger
AT1G69600.1zinc finger homeodomain 1
AT1G74660.1mini zinc finger 1
AT1G75240.1homeobox protein 33
AT2G02540.1homeobox protein 21
AT2G18350.1homeobox protein 24
AT3G28917.1mini zinc finger 2
AT3G28920.1homeobox protein 34
AT3G50890.1homeobox protein 28
AT4G24660.1homeobox protein 22
AT5G15210.1homeobox protein 30
AT5G39760.1homeobox protein 23
AT5G42780.1homeobox protein 27
AT5G60480.1homeobox protein 26
AT5G65410.1homeobox protein 25
ZF-HD Family Introduction

This group of sequences described by a 54-residue domain found in the N-terminal region of plant proteins, the vast majority of which contain a ZF-HD class homeobox domain toward the C terminus. The region between the two domains typically is rich in low complexity sequence. The companion ZF-HD homeobox domain is described in INTERPRO:IPR006455.

A one-hybrid screen resulted in the cloning of four different members of a novel class of plant homeodomain proteins, which are most likely involved in the mesophyll-specific expression of the C4 PEPCase gene in C4 species of the genus Flaveria. Inspection of the homeodomains of the four proteins reveals that they share many common features with homeodomains described so far, but there are also significant differences. Interestingly, this class of homeodomain proteins occurs also in Arabidopsis thaliana and other C3 plants. One-hybrid experiments as well as in vitro DNA binding studies confirmed that these novel homeodomain proteins specifically interact with the proximal region of the C4 PEPCase (C4 phosphoenolpyruvate carboxylase) gene. The N-terminal domains of the homeodomain proteins contain highly conserved sequence motifs. Two-hybrid experiments show that these motifs are sufficient to confer homo- or heterodimer formation between the proteins. Mutagenesis of conserved cysteine residues within the dimerization domain indicates that these residues are essential for dimer formation. Therefore, we designate this novel class of homeobox proteins ZF-HD, for zinc finger homeodomain protein. Our data suggest that the ZF-HD class of homeodomain proteins may be involved in the establishment of the characteristic expression pattern of the C4 PEPCase gene.

Windhovel A, Hein I, Dabrowa R, Stockhaus J.
Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia.
Plant Mol Biol. 2001 Jan;45(2):201-14.
PMID: 11289511